Integrating Big Data and IoT in Physics Laboratory Information Systems: A Systematic Literature Review

Authors

  • Nadiar Pertiwi Program Studi Pendidikan Fisika, Universitas Sriwijaya, Palembang, Indonesia
  • Amelia Fatonah Program Studi Pendidikan Fisika, Universitas Sriwijaya, Palembang, Indonesia
  • Intan Mahdiah Program Studi Pendidikan Fisika, Universitas Sriwijaya, Palembang, Indonesia
  • Hamdi Akhsan Program Studi Pendidikan Fisika, Universitas Sriwijaya, Palembang, Indonesia
  • Iful Amri Program Studi Pendidikan Fisika, Universitas Sriwijaya, Palembang, Indonesia

DOI:

https://doi.org/10.30872/jlpf.v6i2.4986

Keywords:

Automation, Big Data, Data Security, Information System, IoT, Physics Laboratory

Abstract

Physics laboratories generate large volumes of complex experimental data that require efficient and secure management systems. The integration of Big Data and IoT offers solutions through real-time monitoring, automation, and advanced analytics. However, adoption in educational and small-scale laboratories remains limited due to high costs, data security issues, and technical skill gaps. This study employs a Systematic Literature Review (SLR) method, analyzing 30 articles published between 2017 and 2024 from open-access sources such as Google Scholar and IEEE Xplore. Data extraction focuses on applications, challenges, and synergies of Big Data and IoT in physics laboratory information systems. The findings highlight key applications such as real-time environmental monitoring, automated data collection, RFID-based inventory management, and advanced data analytics. The main challenges identified include high implementation costs, system incompatibility, and a lack of skilled personnel. The synergy between IoT and Big Data enhances accuracy, operational efficiency, and decision-making. This study presents a structured framework of challenges and corresponding solutions, and also highlights underutilized practices such as LIMS integration and adaptive environmental control. The contributions include theoretical insights into the digital transformation of laboratories and practical strategies based on CERN’s case study that are applicable to educational and research labs.

Downloads

Download data is not yet available.

References

Adenekan, T. (2022). Analyzing the Security Landscape of RFID Tags: Challenges and Solutions. https://www.researchgate.net/publication/385172397_Analyzing_the_Security_Landscape_of_RFID_Tags_Challenges_and_Solutions

Ahmad, A. F., Sayeed, M. S., Tan, C., Tan, K., Bari, M. A., & Hossain, F. (2021). A Review on IoT with Big Data Analytics. https://doi.org/10.1109/ICoICT52021.2021.9527503

Ahsun, A., & Elly, B. (2024). Optimizing Resource Allocation for Enhanced Project Efficiency. https://www.researchgate.net/publication/385560767_Optimizing_Resource_Allocation_for_Enhanced_Project_Efficiency

Alshar’e, M. (2023). Cyber Security Framework Selection: Comparision Of Nist And Iso27001. Applied Computing Journal, 245–255. https://doi.org/10.52098/acj.202364

Boyar, K., Pham, A., Swantek, S., Ward, G., & Herman, G. (2021). Laboratory Information Management Systems (LIMS) (pp. 131–151). https://doi.org/10.1007/978-3-030-62716-4_7

Devineni, S. K., Kathiriya, S., & Shende, A. (2023). Machine Learning-Powered Anomaly Detection: Enhancing Data Security and Integrity. Journal of Artificial Intelligence & Cloud Computing, 1–9. https://doi.org/10.47363/JAICC/2023(2)184

Di Meglio, A., Jansen, K., Tavernelli, I., Alexandrou, C., Arunachalam, S., Bauer, C. W., Borras, K., Carrazza, S., Crippa, A., Croft, V., de Putter, R., Delgado, A., Dunjko, V., Egger, D. J., Fernandez-Combarro, E., Fuchs, E., Funcke, L., Gonzalez-Cuadra, D., Grossi, M., … Zhang, J. (2023). Quantum Computing for High-Energy Physics: State of the Art and Challenges. Summary of the QC4HEP Working Group. https://doi.org/10.1103/PRXQuantum.5.037001

Dinesh, D., & Smith, N. (2024). Integrating Iot, AI, And Big Data For Enhanced Operational Efficiency In Smart Factories. Educational Administration Theory and Practices, 30. https://doi.org/10.53555/sfs.v30i5.6492

Elias, J. R., Chard, R., Libera, J. A., Foster, I., & Chaudhuri, S. (2020). Manufacturing Data and Machine Learning Platform: Enabling Real-Time Monitoring and Control of Scientific Experiments via IoT. IEEE 6th World Forum on Internet of Things (WF-IoT), 1(2). https://doi.org/10.1109/WF-IoT48130.2020.9221078

Fawzy, D., & Moussa, S. (2022). The Internet of Things and Architectures of Big Data Analytics: Challenges of Intersection at Different Domains. IEEE Access, PP, 1. https://doi.org/10.1109/ACCESS.2022.3140409

Gkrimpizi, T., Peristeras, V., & Magnisalis, I. (2023). Classification of Barriers to Digital Transformation in Higher Education Institutions: Systematic Literature Review. In Education Sciences (Vol. 13, Issue 7). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/educsci13070746

Goundar, S., Bhardwaj, A., Singh, S., Singh, M., & H L, G. (2021). Big Data and Big Data Analytics: A Review of Tools and its Application (pp. 1–19). https://doi.org/10.4018/978-1-7998-6673-2.ch001

Gregorcic, B., & Linder, C. (2022). Challenges and Strategies in Physics Laboratory Work. https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-476218

Harb, H., Makhoul, A., Idrees, A., Zahwi, O., & Taam, M. (2017a). Wireless Sensor Networks: A Big Data Source in Internet of Things. International Journal of Sensors, Wireless Communications and Control, 07. https://doi.org/10.2174/2210327907666170906144926

Harb, H., Makhoul, A., Idrees, A., Zahwi, O., & Taam, M. (2017b). Wireless Sensor Networks: A Big Data Source in Internet of Things. International Journal of Sensors, Wireless Communications and Control, 07. https://doi.org/10.2174/2210327907666170906144926

Islam, Z., Bhuiyan, M. R. I., Poli, T., Hossain, R., & Mani, L. (2024). Gravitating towards Internet of Things: Prospective Applications, Challenges, and Solutions of Using IoT. International Journal of Religion, 5, 436–451. https://doi.org/10.61707/awg31130

Jain, V., Mitra, A., & Paul, S. (2025). Integrating IoT and Big Data Analytics for Enhancing Maritime Safety and Sustainability (pp. 225–256). https://doi.org/10.4018/979-8-3373-1052-7.ch009

Jarašūnienė, A., Čižiūnienė, K., & Čereška, A. (2023). Research on Impact of IoT on Warehouse Management. Sensors, 23, 2213. https://doi.org/10.3390/s23042213

Kalburgi, S. (2024). Enhancing IoT Data Processing with Big Data Analytics. https://doi.org/10.13140/RG.2.2.26319.09123

Kostadimas, D., Kasapakis, V., & Kotis, K. (2025). A Systematic Review on the Combination of VR, IoT and AI Technologies, and Their Integration in Applications. In Future Internet (Vol. 17, Issue 4). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/fi17040163

Morchid, A., El Alami, R., Raezah, A. A., & Sabbar, Y. (2024). Applications of internet of things (IoT) and sensors technology to increase food security and agricultural Sustainability: Benefits and challenges. Ain Shams Engineering Journal, 15(3). https://doi.org/10.1016/j.asej.2023.102509

Muchsin, M., Rahmawati, R. F., & Faishol, M. (2024). Radio Frequency Identification (RFID) Technology Innovation in Science Laboratory Services (pp. 124–132). https://doi.org/10.2991/978-2-38476-331-3_11

Munir, T., Akbar, M. S., Ahmed, S., Sarfraz, A., Sarfraz, Z., Sarfraz, M., Felix, M., & Cherrez-Ojeda, I. (2022). A Systematic Review of Internet of Things in Clinical Laboratories: Opportunities, Advantages, and Challenges. Sensors, 22(20). https://doi.org/10.3390/s22208051

Oluwole, O. G., Oosterwyk, C., Anderson, D., Adadey, S. M., Mnika, K., Manyisa, N., Yalcouye, A., Wonkam, E. T., Aboagye, E. T., Dia, Y., Uwibambe, E., Jonas, M., Priestley, R., Popel, K., Manyashe, T., de Cock, C., Nembaware, V., & Wonkam, A. (2022). The Implementation of Laboratory Information Management System in Multi-Site Genetics Study in Africa: The Challenges and Up-Scaling Opportunities. Journal of Molecular Pathology, 3(4), 262–272. https://doi.org/10.3390/jmp3040022

Patrício, L., Varela, L., & Silveira, Z. (2025). Implementation of a Sustainable Framework for Process Optimization Through the Integration of Robotic Process Automation and Big Data in the Evolution of Industry 4.0. Processes, 13(2). https://doi.org/10.3390/pr13020536

Said, A., Yahyaoui, A., & Abdellatif, T. (2024). HIPAA and GDPR Compliance in IoT Healthcare Systems (pp. 198–209). https://doi.org/10.1007/978-3-031-55729-3_16

Samonte, M. J., Mendoza, F., Pablo, R., & Villa, S. (2021). Internet-of-Things Based Smart Laboratory Environment Monitoring System. https://doi.org/10.1109/ICIEA52957.2021.9436758

Shen, Y. J., Zhang, Y. L., Gao, F., Yang, G. S., & Lai, X. P. (2018). Influence of temperature on the microstructure deterioration of sandstone. Energies, 11(7). https://doi.org/10.3390/en11071753

Tian, W., Vangilder, J., Condor, M., Han, X., & Zuo, W. (2019). An Accurate Fast Fluid Dynamics Model for Data Center Applications. https://doi.org/10.1109/ITHERM.2019.8757336

Unhelkar, B., Joshi, S., Sharma, M., Prakash, S., Mani, A., & Prasad, M. (2022). Enhancing supply chain performance using RFID technology and decision support systems in the industry 4.0–A systematic literature review. International Journal of Information Management, 2. https://doi.org/10.1016/j.jjimei.2022.100084

Downloads

Published

2025-11-30

How to Cite

Pertiwi, N., Fatonah, A., Mahdiah, I., Akhsan, H., & Amri, I. (2025). Integrating Big Data and IoT in Physics Laboratory Information Systems: A Systematic Literature Review. Jurnal Literasi Pendidikan Fisika (JLPF), 6(2), 154–163. https://doi.org/10.30872/jlpf.v6i2.4986

Issue

Section

Articles