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Abstract

This study aimed to identify and describe the types of errors and misconceptions made by
students in the process of constructing proofs. Using a qualitative approach with a case study
design, the subjects were fifth-semester students enrolled in the Abstract Algebra course at
Mulawarman University. Three student responses showing significant error patterns
regarding the Fundamental Isomorphism Theorem were purposively selected and analyzed
based on the Selden & Selden framework. The results indicated that students faced notation,
logical, and structural obstacles. Dominant errors included notation inflexibility (E3),
reversed logic in surjective proofs due to quantifier neglect (E8), and structural
misconceptions in defining kernel and image (M7). Additionally, over-generalization of real
number rules in group operations (M5) was observed. These findings suggested that
students remained at the procedural-thinking stage and had not yet reached the "Object"
stage in their cognitive schema, resulting in a failure to build rigorous deductive arguments.
This study recommends instructional interventions emphasizing the visualization of
abstract structures and strengthening quantifier logic to minimize students' future
epistemological obstacles.
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Abstrak

Penelitian ini bertujuan untuk mengetahui dan mendeskripsikan jenis-jenis kesalahan dan
miskonsepsi mahasiswa dalam mengonstruksi bukti. Menggunakan pendekatan kualitatif
desain studi kasus, subjek penelitian adalah mahasiswa semester lima mata kuliah Struktur
Aljabar di Universitas Mulawarman. Tiga jawaban mahasiswa dipilih secara purposive yang
menunjukkan pola kesalahan signifikan pada topik teorema fundamental isomorfisma
berdasarkan kerangka Selden & Selden. Berdasarkan hasil analisis, diperoleh bahwa
mahasiswa mengalami hambatan pada aspek notasi, logika, dan struktural. Kesalahan
dominan meliputi infleksibilitas notasi (E3), logika terbalik pada pembuktian surjektif akibat
pengabaian kuantor (E8), serta miskonsepsi dalam mendefinisikan kernel dan image (M7).
Selain itu, terjadi generalisasi berlebihan aturan bilangan real pada operasi grup (M5).
Temuan ini menunjukkan mahasiswa masih berada pada tahap berpikir prosedural dan
belum mencapai tahap "Objek" dalam skema kognitifnya, sehingga gagal membangun
argumen deduktif yang rigor. Penelitian ini merekomendasikan intervensi pengajaran yang
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menekankan visualisasi struktur abstrak dan penguatan logika kuantor guna meminimalkan
hambatan epistemologis mahasiswa di masa depan.

Kata kunci: Kesalahan, Miskonsepsi, Struktur aljabar, Konstruksi bukti, [somorfisma

How to Cite: Ridwan, & Haeruddin. (2025). Analyzing students’ errors and misconceptions in
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383-398. https://doi.org/10.30872/primatika.v14i2.6217

INTRODUCTION

Reasoning and proof are among the five process standards emphasized by the National
Council of Teachers of Mathematics (NCTM) in mathematics education (NCTM, 2000).
In the mathematical process, proving serves to verify the truth of a proposition while
simultaneously explaining the underlying reasoning behind that truth (Herizal; et al.,
2024; Rocha, 2019).

At the university level, reasoning and proof lie at the heart of mathematics
education, particularly in advanced courses such as Real Analysis, Abstract Algebra,
and Linear Algebra. In these subjects, students are not only required to apply formulas
but must also construct rigorous formal proofs to verify theorems and explore the
underlying logical structures (Chand, 2021; Powers et al.,, 2010; Stewart & Thomas,
2019). This characteristic reflects the transition from procedural mathematics in
secondary school to deductive mathematics in higher education, aiming to develop
students' abilities in abstract thinking, critical analysis, and the construction of
coherent arguments (Alam & Mohanty, 2024; Nadlifah & Prabawanto, 2017).

One of the courses that demands extensive proof construction is Abstract
Algebra. Abstract Algebra encompasses material related to definitions, theorems,
propositions, and lemmas within the topics of groups, rings, and fields (Bhattacharya
et al.,, 1994; Lee, 2018). The complexity of this material imposes a high cognitive load,
requiring students to not only memorize but also to integrate and apply these formal
concepts logically and procedurally across various contexts.

The challenge in mastering Abstract Algebra often arises from its highly abstract
nature and the high-level capability required to construct proofs (Agustyaningrum et
al., 2023; Subedi, 2020). Many students struggle to understand formal definitions,
select and use appropriate theorems, and develop valid proof sequences (Fatmiyati et
al, 2020; Weber, 2001). These difficulties frequently result in misconceptions or
procedural errors in their solutions (Fatmiyati et al., 2020; Wulan et al., 2021).

Errors in mathematics can be defined as mistakes, wrong steps, or deviations
from the correct result. These are usually incidental, such as calculation errors, the use
of inappropriate algorithms, or other procedural slips (Parwati & Suharta, 2020).
Errors can often be corrected through re-checking or direct feedback. Meanwhile,
misconceptions arise from a lack of conceptual understanding or the consistent
application of incorrect mathematical principles or rules. A misconception is an
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understanding that does not align with correct scientific concepts and often persists
within the cognitive structure (Hestu Wilujeng et al., 2025; Ridho & Juandi, 2023).
Misconceptions can take the form of fundamentally flawed beliefs, such as improper
generalization of rules or misclassifying a concept (Fardah & Palupi, 2023; Ridho &
Juandi, 2023).

Research on student difficulties in mathematical proof, particularly in group
theory, indicates that common errors stem from weak conceptual understanding of
fundamental definitions and theorems. For instance, Khafifah, F et al. (2025) identified
three main types of errors: conceptual, procedural, and technical, largely caused by a
lack of understanding of group properties and imprecision in following proof steps.
Similarly, Herizal et al. (2024) identified procedural patterns such as algebraic errors
and "proof by example," indicating that students struggle to order logical steps and
apply definitions correctly.

Furthermore, students often fail to integrate prior knowledge and select suitable
proof techniques, hindering their ability to build complete and consistent proofs (Saha
et al., 2024). Other studies confirm that a lack of conceptual understanding and a
tendency to rely on rote memorization worsen the ability to select relevant facts and
theorems (Panerio & Delideli, 2025).

While research on error analysis and student misconceptions in Abstract
Algebra, particularly group theory, is extensive (Elif et al., 2015; Khafifah F et al., 2025;
Suradi & Djam’an, 2021; Veith et al., 2022; Yerizon et al.,, 2019), few studies have
conducted an in-depth analysis of errors made during formal proof construction in
advanced topics like quotient groups and group homomorphisms. Mastery of quotient
groups and homomorphisms is essential for understanding advanced abstract algebra
and its applications. These concepts serve as a primary bridge for constructing,
comparing, and generalizing complex structures, such as isomorphisms and their
fundamental theorems (Cheng, 2023; Mena-Lorca & Parraguez, 2016). Categorizing
the extent to which these errors are conceptual (misconceptions) or procedural
(errors) remains necessary for optimizing instructional improvements.

The primary objective of this research is to analyze the types of errors and
misconceptions students make while constructing proofs. This study contributes
specifically by identifying patterns of errors and misconceptions in advanced abstract
algebra topics, namely quotient groups and homomorphisms. By identifying "what is
wrong" and "why it is wrong" in depth, the findings will provide a robust foundation
for designing targeted instructional interventions to minimize the recurrence of these
errors in the future.

METHODS

This research employed a qualitative approach with a case study design. The primary
objective of this case study was to gain a profound and holistic understanding of the
specific types of errors and misconceptions made by students during proof
construction. The subjects of this study were fifth-semester students in the
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Mathematics Education Study Program at Mulawarman University. The participants
were selected through purposive sampling, consisting of three students who exhibited
interesting or significant error patterns when solving proof problems related to the
Fundamental Isomorphism Theorem, i.e. R1, R2, and R3. The selection was also based
on the completeness of their responses, ensuring that the analyzed work covered the
entire process, from defining the mapping to the final conclusion. Research data were
collected through document analysis of the students' written work. The mathematical
problem used to evaluate the subjects' proof construction skills is shown in Figure 1.

Let K be the group of non-zero real numbers under multiplication and L be the group of
positive real numbers under multiplication. The function ¥: K — L is defined as y(x) = x2.
Show that K/{1,—1} =~ L.

Figure 1. Test instrument

Data analysis was conducted inductively and interpretatively, utilizing the Selden
and Selden Proof Error Taxonomy (Selden & Selden, 1987) as the initial analytical
framework. This process involved: (a) step-by-step coding of participants' written
proofs to identify each error; (b) classifying these errors into structural and logical
categories according to the Selden and Selden framework; and (c) inferring
misconceptions by interpreting the reasons or conceptual beliefs underlying these
consistent error patterns. Through an in-depth study of these cases, this research aims
to uncover how and why specific misconceptions affect students' proof reasoning
processes, providing a rich and detailed qualitative description.

RESULTS AND DISCUSSION

The results presented in this section are based on each subject's responses, categorized
by the types of errors and misconceptions identified. Each response underwent an in-
depth analysis to determine and describe the specific nature of these errors and
misconceptions.

Errors and Misconceptions Committed by Subject R1

Based on the responses provided, several errors and misconceptions were identified
in Subject R1’s work. Consider the following results of Subject R1's proof construction
presented in Figure 2. The detailed analysis of the types of errors and misconceptions
committed by Subject R1 is presented in Table 1.

The errors committed by Subject R1 in proving isomorphic group structures
reflect epistemological obstacles rooted in an inability to transition from a
computational-procedural mindset to formal-abstract thinking. Findings regarding
notation inflexibility (E3) and the use of information out of context (E10)—where the
subject failed to adopt the notation 1 and group K provided in the problem—indicate
that students remain at the stage of instrumental understanding (Greeno, 1997). At
this stage, students tend to rely on a single example stored in their long-term memory;
consequently, when faced with new symbolic variations, cognitive load occurs,
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hindering flexible thinking (Subedi, 2020). Furthermore, research by Landy et al.
(2014) confirms that dependence on standard notation often becomes a barrier for
students in understanding the essence of set relations in abstract algebra.
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Figure 2. Subject R1’s response in constructing the proof

Table 1. Analysis of Error Types and Misconceptions of Subject R1

No Proof Type of Error and Description and Evidence
Component Misconception
1 Function E3: Notation The problem defines the mapping from K to L
Notation Inflexibility using the notation 1 or yY: K — L. However,
Subject R1 consistently used the notation ¢
or ¢: K — L, demonstrating a failure to adapt
to the specific notation provided in the
problem.
2 Homomorphism E10: Using When Subject R1 began showing that the
Domain Information Out of mapping ¥ is a homomorphism, the subject
Context wrote "Take x,y € G," whereas the correct
domain should be K (the group of non-zero
real numbers). The notation G is a general
notation for groups taken from other contexts
and applied inappropriately here.
3 Surjective Logic  E8: Ignoring and Subject R1 performed the surjective proof

Extending Quantifiers

4  Kernel Definition M7: Interchange of

Elements and Sets

using reversed logic. Ideally, showing
surjectivity must start by taking an element
from L and demonstrating the existence of an
element in K. Subject R1 wrote "Take x € K,
choose x? € L," which incorrectly suggests
that x? is selected from L after x is taken from
K.

This is a fundamental error indicating a
structural misconception where Subject R1
defined the kernel as

ker(p) = {x? € R* | p(x) = 1}

Since the kernel is a subset of K, the kernel
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No Proof Type of Error and Description and Evidence
Component Misconception

elements should be x, not the mapping result
2

x? in R*. Subject R1 confused domain and

codomain elements within the set notation.
5 Kernel M5: Universal Subject R1 demonstrated a logical
Calculation Application of Real inconsistency by defining the kernel set as
Number Rules {x? € Rt | x> = 1} but providing {1,—1} as

the final result. This is nonsensical because
—1 ¢ R*. This error shows that the subject
relied on an intuitive "square root" procedure
from real number algebra without
maintaining logical consistency within their
own set-defined constraints.
6 Image Definition M?7: Interchange of SubjectR1 defined
Elements and Sets Im (@) = {p(x) = x? | x? € R*}

The condition x? € R* is always true if x € K,
whereas the definition should only require
x € K.This represents incorrect notation that
mixes the requirements of domain and

codomain elements.

Moreover, the error in E8 (ignoring and extending quantifiers) regarding the
proof of surjectivity, where the subject initiated the proof from the domain instead of
the codomain, demonstrates a weak understanding of the order of formal quantifiers
(V dan 3). This "reversed logic" phenomenon strengthens the arguments of Mejia-
Ramos et al. (2015) dan Weber (2001) that students often view proof as mere
symbolic manipulation rather than the construction of a logical argument that must
follow the proper mapping direction. This failure is closely linked to fundamental
misconceptions in the definitions of Kernel and Image related to misconception M7
(Interchange of Elements and Sets). Subject R1 experienced structural confusion by
placing the mapping result x? as a member of the kernel, whereas the kernel should be
a subset of the domain. From the perspective of APOS theory (Tsafe, 2024), this
indicates that the subject has not yet reached the "Object" stage in their cognitive
schema, where they can operate functional rules but fail to conceptualize the kernel
and image as structurally separate set entities.

Lastly, the subject's tendency to apply real number rules universally (M5) in
kernel calculations without referring to the identity element of the multiplicative
group indicates an over-generalization of basic arithmetic knowledge. Students often
make intuitive leaps by assuming that familiar properties of number systems will
automatically apply to newly learned abstract structures. This shows that without
strong cognitive connections between the concept of group identity and algebraic
procedures, students will continue to struggle in achieving the mathematical rigor
required in Abstract Algebra courses (Basir, 2025; Mumu & Tanujaya, 2019). Overall,
the misconceptions performed by R1 are not merely technical errors but a
representation of mental unreadiness in constructing formal definitions into precise
mathematical language.
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Errors and Misconceptions Committed by Subject R2

Based on Subject R2’s work in Figure 3, the subject began the proof by writing the
mapping, followed by demonstrating that the mapping is well-defined, determining the
kernel, establishing that the mapping is a homomorphism, determining surjectivity,
and finally drawing a conclusion.

(e, x ) pE> O f 1

I8 G A SurtelcHE

X e b slearern e
1}/ .lL’7\/ ; '\.\L/ ?)(1 "\J/[bcj? Lé‘) re
Atecan  drtrovcian V,{l;l) ~ L - 0L e
oPemetaun
Y le =t

© W el detine
ambr e gle den g el mota () =W L)
M~ e
peLds g7
L2 =R 0 , lareso ¢ el den levodray memomin o €102
maea ,
U= WL

orena eIl ACANT, CursRlpi®,
@ ker C~P)= S x € fe Lnpoo: €y den homomottispm meta
>rerte) = L vy Slen =l
la Ced= U woO® | x ¢ k"‘)

= (m(W)‘{le—g
@ Hommp o r Hsmeg

W(lel) = (kt)?

= Rt = AP (D Pee) - Teebulen

Figure 3. Subject R2’s response in constructing the proof

In Subject R2's sequence of work, there is a clear error because the prerequisite
for determining the kernel is first showing that the given mapping is a homomorphism.
Further details regarding the errors and misconceptions committed by Subject R2 can
be seen in Table 2.

Table 2. Analysis of Error Types and Misconceptions of Subject R2

No Proof Type of Error and  Description and Evidence
Component Misconception
1  Proof Sequence E5: Disorganized The sequence of proof steps is illogical
Proof because the kernel is discussed before
the homomorphism.

2 Well defined E3: Notation Subject R2 erred in testing well-
Inflexibility & E1: definedness by taking element k from
Overly Broad K and element ¢ from L, then
Symbol comparing (k) =P (¥£), whereas

well-definedness only involves
domain elements K—specifically, if
ki =k, then (k1) = P (k).

3 Kernel (Ker(y)) E9: Holes Although the formal definition of the
kernel is correct

ker() = (x €K | p(x) = e, = 1)

the subject failed to explicitly solve the
set to obtain the result ker(y) =
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No Proof Type of Error and  Description and Evidence
Component Misconception
{1,-1}.
4 Image (Im(¥y)) E4: Non- The subject stated the result Im (y) =
Mathematical {R*} atau L without presenting
Context sufficient mathematical arguments to
justify that x? covers all positive real
numbers.
5  Surjective E8: The proof of surjectivity is extremely

Ignoring/Extending brief, only claiming ¥(K) = Rt = L.

Quantifiers & E9: The subject did not include arguments

Holes for the existence of (x = \/; or x =
—\/; for y € L) which is mandatory in
a surjective proof.

The analysis of Subject R2's work reveals a pattern of cognitive obstacles focused
on the inability to organize a deductive flow and the failure to construct existence
arguments. Unlike the previous subject, Subject R2 experienced Disorganized Proof
(E5), where proof steps were performed without a logical sequence, such as discussing
the kernel before ensuring the mapping structure is a homomorphism. This aligns with
findings by Netti et al. (2024), which indicate that failures in constructing
mathematical proofs are heavily influenced by fragmented cognitive structures—such
asincomplete, disconnected, or immature schemas—causing students and prospective
teachers to only link proof steps locally without understanding the proof structure as
a coherent whole (Anwar et al., 2023).

In testing the well-defined property, the subject exhibited Notation Inflexibility
(E3) and Overly Broad Symbols (E1) by incorrectly comparing elements from the
domain K and codomain L. This phenomenon indicates confusion between the
definition of a function and set relations, consistent with findings that many students
operate function definitions and well-defined properties procedurally without deeply
coordinating the domain, codomain, and correspondence rules (Sebsibe et al., 2019;
Uscanga et al., 2024; Uscanga & Cook, 2024).

Further errors were identified through the Holes (E9) phenomenon; although the
subject could write the formal definition of a kernel, they failed to execute the solution
set to completion. This failure suggests that Subject R2 reached a "procedural” level in
writing definitions but encountered a deadlock when integrating computational
algebraic knowledge into the formal framework. In the surjectivity proof, the subject
used Non-Mathematical Text (E4) and Quantifier Neglect (E8) by making brief claims
without including the existence argument for the pre-image, x = iﬁ. This lack of
existential proof confirms Moore (1994) findings that students often rely on visual
intuition or oral claims because they perceive formal proofs as too abstract or
redundant. Overall, Subject R2 understood "what" needed to be proven definitively but
failed to explain "how" the argument is constructed rigorously and logically within
abstract algebra standards.
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Errors and Misconceptions Committed by Subject R3

Figure 4 shows the problem-solving process carried out by Subject R3. From this
figure, we can observe how the proof strategy chosen by the subject triggers several
types of errors and misconceptions. A detailed analysis of the types of errors and
misconceptions experienced by Subject R3 can be found in Table 3. This analysis
highlights how mistakes in proof strategy and symbolic manipulation lead to the

construction of an invalid proof.

e=( R N0y , =)
L=(IIRY, =)

Yo b —> L . Wim) = =T
Tenuettcan L3 = 1 _
[P
LT
F<etr Pumase fumg o Yot ok — L dengan Yy = 2.
Perhatifan Lubhboo < P Encpaobomn Laarngan FEa: &ete hay Ferhandop opcrovt Pericoime.

Sednrguer L tmenipmtean  biaman Fear paukp [RY) ferhadap operctt Pertcaumn

Fifm OB e e beren  hakidn

Yty — e Léw

S e drp = 2y

F ek Erp
ADccr e pt e bl / Sormar i G -
tnerte YL LX)  [ngeicerp
¥ix) — 2 ™
Fg) = x>
¥ty — ¥ otxe)
5 - = =,
=) 1) = >
inpewtrf
Un prcta Yo bl LN ' = ~ v
W e ) = x= (e -1y -
“ (v = =* <
¥ ote) = Y (=) ~ L
v (y) =~ ¥ (ZEF) (49:%)
¥ ty) = ¥ (=) T ettt
5 = ¥
= S‘u-j--euh'F

Figure 4. Subject R3’s response

in constructing the proof

Table 3. Analysis of Error Types and Misconceptions of Subject R3

No Proof Type of Error and Description and Evidence
Component Misconception
1 Initial Strategy E6: Invalid/Missing The subject did not prove the
Proof & E5: Homomorphism property at all
Disorganized Proof Instead, the subject attempted to
prove K/{1,—1} = L directly (which
was incorrect) rather than utilizing
the First Isomorphism Theorem.
2 Injective Property Ma: Inconsistent The SUb]e(z:t- failed Eo recognize
L thatx“ = y* in K = R* berarti x =
Application of Rules & . .
+y. He claims that y=x is
M3:  Reversal of fundamentall ron roving that
Definition/Theorem undamentatly Wrong, proving 'ha
the mapping is actually not injective.
3 Surjective E6: Invalid/Missing The mathematical manipulation in
Property Proof & E8: Ignoring the surjectivity proof  was
Quantifiers nonsensical, beginning with ¥ (y) =

1(x) and continuing in a manner that
did not align with the definition of
surjectivity, which requires finding a
pre-image x € K forevery y € L.
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No Proof Type of Error and Description and Evidence
Component Misconception
4  Conclusion E1: Overly Broad The use of quotient group notation

Symbol & E4: Non- was incorrect and ambiguous, such
Mathematical Text asK/(y,x) and (1,—1) (using
ordered pairs instead of the set

{1,-1}).

In-depth, Subject R3’s failure in the isomorphism proof is rooted in the inability
to use formal definitions as tools for proving. This aligns with findings that many
students view definitions as memorized text rather than operational tools for building
structured deductive arguments (Schneider, 2020). Such results can be categorized as
errors E6 (invalid/missing proof) and E5 (disorganized proof), reflecting a failure to
build a systematic proof scheme, consistent with studies by Norton et al. (2025) on
student difficulties in constructing introductory proofs.

In the injectivity section, the subject's error in concluding x> =y2 = x =1y
within group R* indicates an epistemological obstacle in the form of
overgeneralization from high school algebra rules, where students are accustomed to
single-solution scenarios (Schneider, 2020). Specifically, the subject failed to recognize
that in the group of non-zero real numbers, the equation actually has two solutions:
x = +y. This error occurs because the subject remains at the Action level of
understanding in APOS theory, capable only of performing routine procedural
manipulations without structural reflection on identity elements and group operation
properties (Arnon et al., 2014). At this level, group definitions and properties have not
been encapsulated as objects that can be flexibly manipulated, making such errors very
common.

Furthermore, the errors made regarding surjectivity can be classified as E6
(invalid proof) and E8 (ignoring quantifiers). The subject performed illogical symbolic
manipulations, such as writing ¥ (x) = y/(y) without a systematic procedure to find a
pre-image x for every y in the codomain. This pattern indicates a weak understanding
of quantified statements and the functional relationship between domain and
codomain elements. Studies on the transition from natural to formal language show
that many students struggle to consistently interpret function symbols, dependent
variables, and the quantifiers "for every" or "there exists"; consequently, reasoning
about surjectivity often devolves into notation manipulation devoid of logical meaning
(Kwon & Park, 2025).

Finally, in the conclusion, Subject R3 committed errors related to E1 (overly
broad symbols) and E4 (non-mathematical text). The subject used ordered pair
notation K/(1,—1) or K/(y,x) to represent the quotient group instead of writing the
correct set of cosets, such as K/{1,1}.. This demonstrates a cognitive inability to
encapsulate the coset concept into a single abstract object. Rather than seeing a coset
as a "single point" in the quotient structure, the subject reverted to more familiar
schemas like Cartesian products and ordered pairs. Studies on epistemological
obstacles in advanced mathematics suggest that when students lack adequate
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visualization and representation schemas for abstract objects (such as quotient groups
or partitions), they tend to replace them with more concrete but ontologically incorrect
structures (Schneider, 2020).

CONCLUSION

Based on the results and discussion above, it can be concluded that students
experience significant cognitive obstacles in integrating their understanding of
structural concepts with formal proof capabilities. This is characterized by the
emergence of fundamental misconceptions, such as the confusion between domain and
codomain elements in defining the Kernel (M7), as well as patterns of disorganized
proof (E5) and logical "holes" (E9) that lead to the failure of constructing valid
arguments regarding surjectivity and homomorphisms. The reliance on real number
algebraic intuition, which triggers over-generalization (M4/M5), along with routine
procedural manipulation behaviors, confirms that student understanding remains
stalled at the "Action" level of APOS theory. At this level, they fail to perform structural
reflection on the operational boundaries of groups. This condition culminates in
ontological misconceptions when representing quotient groups using ambiguous
symbols (E1), demonstrating a failure in the process of encapsulating the coset concept
into a single object. By identifying in depth "what" and "why" these errors occur, this
study successfully maps specific failure patterns in quotient group and
homomorphism materials. These findings serve as a crucial foundation for designing
instructional interventions based on cognitive transitions to minimize similar
obstacles in the future.
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