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Abstract 

This study aimed to identify and describe the types of errors and misconceptions made by 
students in the process of constructing proofs. Using a qualitative approach with a case study 
design, the subjects were fifth-semester students enrolled in the Abstract Algebra course at 
Mulawarman University. Three student responses showing significant error patterns 
regarding the Fundamental Isomorphism Theorem were purposively selected and analyzed 
based on the Selden & Selden framework. The results indicated that students faced notation, 
logical, and structural obstacles. Dominant errors included notation inflexibility (E3), 
reversed logic in surjective proofs due to quantifier neglect (E8), and structural 
misconceptions in defining kernel and image (M7). Additionally, over-generalization of real 
number rules in group operations (M5) was observed. These findings suggested that 
students remained at the procedural-thinking stage and had not yet reached the "Object" 
stage in their cognitive schema, resulting in a failure to build rigorous deductive arguments. 
This study recommends instructional interventions emphasizing the visualization of 
abstract structures and strengthening quantifier logic to minimize students' future 
epistemological obstacles. 
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Abstrak 

Penelitian ini bertujuan untuk mengetahui dan mendeskripsikan jenis-jenis kesalahan dan 
miskonsepsi mahasiswa dalam mengonstruksi bukti. Menggunakan pendekatan kualitatif 
desain studi kasus, subjek penelitian adalah mahasiswa semester lima mata kuliah Struktur 
Aljabar di Universitas Mulawarman. Tiga jawaban mahasiswa dipilih secara purposive yang 
menunjukkan pola kesalahan signifikan pada topik teorema fundamental isomorfisma 
berdasarkan kerangka Selden & Selden. Berdasarkan hasil analisis, diperoleh bahwa 
mahasiswa mengalami hambatan pada aspek notasi, logika, dan struktural. Kesalahan 
dominan meliputi infleksibilitas notasi (E3), logika terbalik pada pembuktian surjektif akibat 
pengabaian kuantor (E8), serta miskonsepsi dalam mendefinisikan kernel dan image (M7). 
Selain itu, terjadi generalisasi berlebihan aturan bilangan real pada operasi grup (M5). 
Temuan ini menunjukkan mahasiswa masih berada pada tahap berpikir prosedural dan 
belum mencapai tahap "Objek" dalam skema kognitifnya, sehingga gagal membangun 
argumen deduktif yang rigor. Penelitian ini merekomendasikan intervensi pengajaran yang 

https://doaj.org/toc/2302-4518
https://jurnal.fkip.unmul.ac.id/index.php/primatika/copyright
https://orcid.org/0000-0002-9067-9314


384  Analyzing students’ errors and misconceptions in proof construction in abstract algebra course 

 

 https://doi.org/10.30872/primatika.v14i2.6217 

menekankan visualisasi struktur abstrak dan penguatan logika kuantor guna meminimalkan 
hambatan epistemologis mahasiswa di masa depan. 

Kata kunci: Kesalahan, Miskonsepsi, Struktur aljabar, Konstruksi bukti, Isomorfisma 

How to Cite: Ridwan, & Haeruddin. (2025). Analyzing students’ errors and misconceptions in 
proof construction in abstract algebra course. Primatika: Jurnal Pendidikan Matematika, 14(2), 
383–398. https://doi.org/10.30872/primatika.v14i2.6217 

 

INTRODUCTION 

Reasoning and proof are among the five process standards emphasized by the National 

Council of Teachers of Mathematics (NCTM) in mathematics education (NCTM, 2000). 

In the mathematical process, proving serves to verify the truth of a proposition while 

simultaneously explaining the underlying reasoning behind that truth (Herizal; et al., 

2024; Rocha, 2019). 

At the university level, reasoning and proof lie at the heart of mathematics 

education, particularly in advanced courses such as Real Analysis, Abstract Algebra, 

and Linear Algebra. In these subjects, students are not only required to apply formulas 

but must also construct rigorous formal proofs to verify theorems and explore the 

underlying logical structures (Chand, 2021; Powers et al., 2010; Stewart & Thomas, 

2019). This characteristic reflects the transition from procedural mathematics in 

secondary school to deductive mathematics in higher education, aiming to develop 

students' abilities in abstract thinking, critical analysis, and the construction of 

coherent arguments (Alam & Mohanty, 2024; Nadlifah & Prabawanto, 2017). 

One of the courses that demands extensive proof construction is Abstract 

Algebra. Abstract Algebra encompasses material related to definitions, theorems, 

propositions, and lemmas within the topics of groups, rings, and fields (Bhattacharya 

et al., 1994; Lee, 2018). The complexity of this material imposes a high cognitive load, 

requiring students to not only memorize but also to integrate and apply these formal 

concepts logically and procedurally across various contexts. 

The challenge in mastering Abstract Algebra often arises from its highly abstract 

nature and the high-level capability required to construct proofs (Agustyaningrum et 

al., 2023; Subedi, 2020). Many students struggle to understand formal definitions, 

select and use appropriate theorems, and develop valid proof sequences (Fatmiyati et 

al., 2020; Weber, 2001). These difficulties frequently result in misconceptions or 

procedural errors in their solutions (Fatmiyati et al., 2020; Wulan et al., 2021). 

Errors in mathematics can be defined as mistakes, wrong steps, or deviations 

from the correct result. These are usually incidental, such as calculation errors, the use 

of inappropriate algorithms, or other procedural slips (Parwati & Suharta, 2020). 

Errors can often be corrected through re-checking or direct feedback. Meanwhile, 

misconceptions arise from a lack of conceptual understanding or the consistent 

application of incorrect mathematical principles or rules. A misconception is an 
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understanding that does not align with correct scientific concepts and often persists 

within the cognitive structure (Hestu Wilujeng et al., 2025; Ridho & Juandi, 2023). 

Misconceptions can take the form of fundamentally flawed beliefs, such as improper 

generalization of rules or misclassifying a concept (Fardah & Palupi, 2023; Ridho & 

Juandi, 2023). 

Research on student difficulties in mathematical proof, particularly in group 

theory, indicates that common errors stem from weak conceptual understanding of 

fundamental definitions and theorems. For instance, Khafifah, F et al. (2025)  identified 

three main types of errors: conceptual, procedural, and technical, largely caused by a 

lack of understanding of group properties and imprecision in following proof steps. 

Similarly, Herizal et al. (2024) identified procedural patterns such as algebraic errors 

and "proof by example," indicating that students struggle to order logical steps and 

apply definitions correctly. 

Furthermore, students often fail to integrate prior knowledge and select suitable 

proof techniques, hindering their ability to build complete and consistent proofs (Saha 

et al., 2024). Other studies confirm that a lack of conceptual understanding and a 

tendency to rely on rote memorization worsen the ability to select relevant facts and 

theorems (Panerio & Delideli, 2025). 

While research on error analysis and student misconceptions in Abstract 

Algebra, particularly group theory, is extensive (Elif et al., 2015; Khafifah F et al., 2025; 

Suradi & Djam’an, 2021; Veith et al., 2022; Yerizon et al., 2019), few studies have 

conducted an in-depth analysis of errors made during formal proof construction in 

advanced topics like quotient groups and group homomorphisms. Mastery of quotient 

groups and homomorphisms is essential for understanding advanced abstract algebra 

and its applications. These concepts serve as a primary bridge for constructing, 

comparing, and generalizing complex structures, such as isomorphisms and their 

fundamental theorems (Cheng, 2023; Mena-Lorca & Parraguez, 2016). Categorizing 

the extent to which these errors are conceptual (misconceptions) or procedural 

(errors) remains necessary for optimizing instructional improvements. 

The primary objective of this research is to analyze the types of errors and 

misconceptions students make while constructing proofs. This study contributes 

specifically by identifying patterns of errors and misconceptions in advanced abstract 

algebra topics, namely quotient groups and homomorphisms. By identifying "what is 

wrong" and "why it is wrong" in depth, the findings will provide a robust foundation 

for designing targeted instructional interventions to minimize the recurrence of these 

errors in the future. 

METHODS 

This research employed a qualitative approach with a case study design. The primary 

objective of this case study was to gain a profound and holistic understanding of the 

specific types of errors and misconceptions made by students during proof 

construction. The subjects of this study were fifth-semester students in the 
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Mathematics Education Study Program at Mulawarman University. The participants 

were selected through purposive sampling, consisting of three students who exhibited 

interesting or significant error patterns when solving proof problems related to the 

Fundamental Isomorphism Theorem, i.e. R1, R2, and R3. The selection was also based 

on the completeness of their responses, ensuring that the analyzed work covered the 

entire process, from defining the mapping to the final conclusion. Research data were 

collected through document analysis of the students' written work. The mathematical 

problem used to evaluate the subjects' proof construction skills is shown in Figure 1. 

 

Let 𝐾 be the group of non-zero real numbers under multiplication and 𝐿 be the group of 
positive real numbers under multiplication. The function 𝜓: 𝐾 → 𝐿 is defined as 𝜓(𝑥) = 𝑥2. 
Show that 𝐾/{1, −1} ≃ 𝐿. 

Figure 1. Test instrument 

 

Data analysis was conducted inductively and interpretatively, utilizing the Selden 

and Selden Proof Error Taxonomy (Selden & Selden, 1987) as the initial analytical 

framework. This process involved: (a) step-by-step coding of participants' written 

proofs to identify each error; (b) classifying these errors into structural and logical 

categories according to the Selden and Selden framework; and (c) inferring 

misconceptions by interpreting the reasons or conceptual beliefs underlying these 

consistent error patterns. Through an in-depth study of these cases, this research aims 

to uncover how and why specific misconceptions affect students' proof reasoning 

processes, providing a rich and detailed qualitative description. 

RESULTS AND DISCUSSION 

The results presented in this section are based on each subject's responses, categorized 

by the types of errors and misconceptions identified. Each response underwent an in-

depth analysis to determine and describe the specific nature of these errors and 

misconceptions. 

Errors and Misconceptions Committed by Subject R1 

Based on the responses provided, several errors and misconceptions were identified 

in Subject R1’s work. Consider the following results of Subject R1's proof construction 

presented in Figure 2. The detailed analysis of the types of errors and misconceptions 

committed by Subject R1 is presented in Table 1. 

The errors committed by Subject R1 in proving isomorphic group structures 

reflect epistemological obstacles rooted in an inability to transition from a 

computational-procedural mindset to formal-abstract thinking. Findings regarding 

notation inflexibility (E3) and the use of information out of context (E10)—where the 

subject failed to adopt the notation 𝜓 and group 𝐾 provided in the problem—indicate 

that students remain at the stage of instrumental understanding (Greeno, 1997). At 

this stage, students tend to rely on a single example stored in their long-term memory; 

consequently, when faced with new symbolic variations, cognitive load occurs, 
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hindering flexible thinking (Subedi, 2020). Furthermore, research by Landy et al. 

(2014)  confirms that dependence on standard notation often becomes a barrier for 

students in understanding the essence of set relations in abstract algebra. 

 

 
Figure 2. Subject R1’s response in constructing the proof 

 

Table 1. Analysis of Error Types and Misconceptions of Subject R1 

No Proof 
Component 

Type of Error and 
Misconception 

Description and Evidence 

1 Function 
Notation 

E3: Notation 
Inflexibility 

The problem defines the mapping from 𝐾 to 𝐿 
using the notation 𝜓 or 𝜓: 𝐾 → 𝐿. However, 
Subject R1 consistently used the notation 𝜑 
or 𝜑: 𝐾 → 𝐿, demonstrating a failure to adapt 
to the specific notation provided in the 
problem. 

2 Homomorphism 
Domain 

E10: Using 
Information Out of 
Context 

When Subject R1 began showing that the 
mapping 𝜓 is a homomorphism, the subject 
wrote "Take 𝑥, 𝑦 ∈ 𝐺," whereas the correct 
domain should be 𝐾 (the group of non-zero 
real numbers). The notation 𝐺 is a general 
notation for groups taken from other contexts 
and applied inappropriately here. 

3 Surjective Logic E8: Ignoring and 
Extending Quantifiers 

Subject R1 performed the surjective proof 
using reversed logic. Ideally, showing 
surjectivity must start by taking an element 
from 𝐿 and demonstrating the existence of an 
element in 𝐾. Subject R1 wrote "Take 𝑥 ∈ 𝐾, 
choose 𝑥2 ∈ 𝐿," which incorrectly suggests 
that 𝑥2 is selected from 𝐿 after 𝑥 is taken from 
𝐾. 

4 Kernel Definition M7: Interchange of 
Elements and Sets 

This is a fundamental error indicating a 
structural misconception where Subject R1 
defined the kernel as  

ker(𝜑) = {𝑥2 ∈ ℝ+ ∣ 𝜑(𝑥) = 1} 
Since the kernel is a subset of 𝐾, the kernel 
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No Proof 
Component 

Type of Error and 
Misconception 

Description and Evidence 

elements should be 𝑥, not the mapping result 
𝑥2 in ℝ+. Subject R1 confused domain and 
codomain elements within the set notation. 

5 Kernel 
Calculation 

M5: Universal 
Application of Real 
Number Rules 

Subject R1 demonstrated a logical 
inconsistency by defining the kernel set as 
{𝑥2 ∈ ℝ+ ∣  𝑥2  =  1} but providing {1, −1} as 
the final result. This is nonsensical because 
−1 ∉ ℝ+. This error shows that the subject 
relied on an intuitive "square root" procedure 
from real number algebra without 
maintaining logical consistency within their 
own set-defined constraints. 

6 Image Definition M7: Interchange of 
Elements and Sets 

Subject R1 defined  
𝐼𝑚 (𝜑) = {𝜑(𝑥) = 𝑥2 ∣ 𝑥2 ∈ ℝ+} 

The condition 𝑥2 ∈ ℝ+ is always true if 𝑥 ∈ 𝐾, 
whereas the definition should only require 
𝑥 ∈ 𝐾. This represents incorrect notation that 
mixes the requirements of domain and 
codomain elements. 

 

Moreover, the error in E8 (ignoring and extending quantifiers) regarding the 

proof of surjectivity, where the subject initiated the proof from the domain instead of 

the codomain, demonstrates a weak understanding of the order of formal quantifiers 

(∀ dan ∃). This "reversed logic" phenomenon strengthens the arguments of Mejía-

Ramos et al. (2015)  dan Weber (2001) that students often view proof as mere 

symbolic manipulation rather than the construction of a logical argument that must 

follow the proper mapping direction. This failure is closely linked to fundamental 

misconceptions in the definitions of Kernel and Image related to misconception M7 

(Interchange of Elements and Sets). Subject R1 experienced structural confusion by 

placing the mapping result 𝑥2 as a member of the kernel, whereas the kernel should be 

a subset of the domain. From the perspective of APOS theory (Tsafe, 2024), this 

indicates that the subject has not yet reached the "Object" stage in their cognitive 

schema, where they can operate functional rules but fail to conceptualize the kernel 

and image as structurally separate set entities. 

Lastly, the subject's tendency to apply real number rules universally (M5) in 

kernel calculations without referring to the identity element of the multiplicative 

group indicates an over-generalization of basic arithmetic knowledge. Students often 

make intuitive leaps by assuming that familiar properties of number systems will 

automatically apply to newly learned abstract structures. This shows that without 

strong cognitive connections between the concept of group identity and algebraic 

procedures, students will continue to struggle in achieving the mathematical rigor 

required in Abstract Algebra courses (Basir, 2025; Mumu & Tanujaya, 2019). Overall, 

the misconceptions performed by R1 are not merely technical errors but a 

representation of mental unreadiness in constructing formal definitions into precise 

mathematical language. 
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Errors and Misconceptions Committed by Subject R2 

Based on Subject R2’s work in Figure 3, the subject began the proof by writing the 

mapping, followed by demonstrating that the mapping is well-defined, determining the 

kernel, establishing that the mapping is a homomorphism, determining surjectivity, 

and finally drawing a conclusion. 

 

 
Figure 3. Subject R2’s response in constructing the proof 

 

In Subject R2's sequence of work, there is a clear error because the prerequisite 

for determining the kernel is first showing that the given mapping is a homomorphism. 

Further details regarding the errors and misconceptions committed by Subject R2 can 

be seen in Table 2. 

 

Table 2. Analysis of Error Types and Misconceptions of Subject R2 

No Proof 
Component 

Type of Error and 
Misconception 

Description and Evidence 

1 Proof Sequence E5: Disorganized 
Proof 

The sequence of proof steps is illogical 
because the kernel is discussed before 
the homomorphism. 

2 Well defined E3: Notation 
Inflexibility & E1: 
Overly Broad 
Symbol 

Subject R2 erred in testing well-
definedness by taking element 𝑘 from 
𝐾 and element ℓ from 𝐿, then 
comparing 𝜓(𝑘) = 𝜓(ℓ), whereas 
well-definedness only involves 
domain elements 𝐾—specifically, if 
𝑘1 = 𝑘2, then 𝜓(𝑘1) = 𝜓(𝑘2). 

3 Kernel (Ker(𝜓)) E9: Holes Although the formal definition of the 
kernel is correct 

ker(𝜓) = {𝑥 ∈ 𝐾 ∣ 𝜓(𝑥) = 𝑒𝐿 = 1} 
the subject failed to explicitly solve the 
set to obtain the result ker(𝜓) =
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No Proof 
Component 

Type of Error and 
Misconception 

Description and Evidence 

{1, −1}. 
4 Image (𝐼𝑚(𝜓)) E4: Non-

Mathematical 
Context 

The subject stated the result 𝐼𝑚 (𝜓) =
{ℝ+} atau 𝐿 without presenting 
sufficient mathematical arguments to 
justify that 𝑥2 covers all positive real 
numbers. 

5 Surjective E8: 
Ignoring/Extending 
Quantifiers & E9: 
Holes 

The proof of surjectivity is extremely 
brief, only claiming 𝜓(𝐾) = ℝ+ = 𝐿. 
The subject did not include arguments 

for the existence of (𝑥 = √𝑦 or 𝑥 =

−√𝑦 for 𝑦 ∈ 𝐿 ) which is mandatory in 

a surjective proof. 

 

The analysis of Subject R2's work reveals a pattern of cognitive obstacles focused 

on the inability to organize a deductive flow and the failure to construct existence 

arguments. Unlike the previous subject, Subject R2 experienced Disorganized Proof 

(E5), where proof steps were performed without a logical sequence, such as discussing 

the kernel before ensuring the mapping structure is a homomorphism. This aligns with 

findings by Netti et al. (2024), which indicate that failures in constructing 

mathematical proofs are heavily influenced by fragmented cognitive structures—such 

as incomplete, disconnected, or immature schemas—causing students and prospective 

teachers to only link proof steps locally without understanding the proof structure as 

a coherent whole (Anwar et al., 2023). 

In testing the well-defined property, the subject exhibited Notation Inflexibility 

(E3) and Overly Broad Symbols (E1) by incorrectly comparing elements from the 

domain 𝐾 and codomain 𝐿. This phenomenon indicates confusion between the 

definition of a function and set relations, consistent with findings that many students 

operate function definitions and well-defined properties procedurally without deeply 

coordinating the domain, codomain, and correspondence rules (Sebsibe et al., 2019; 

Uscanga et al., 2024; Uscanga & Cook, 2024). 

Further errors were identified through the Holes (E9) phenomenon; although the 

subject could write the formal definition of a kernel, they failed to execute the solution 

set to completion. This failure suggests that Subject R2 reached a "procedural" level in 

writing definitions but encountered a deadlock when integrating computational 

algebraic knowledge into the formal framework. In the surjectivity proof, the subject 

used Non-Mathematical Text (E4) and Quantifier Neglect (E8) by making brief claims 

without including the existence argument for the pre-image, 𝑥 = ±√𝑦. This lack of 

existential proof confirms Moore (1994) findings that students often rely on visual 

intuition or oral claims because they perceive formal proofs as too abstract or 

redundant. Overall, Subject R2 understood "what" needed to be proven definitively but 

failed to explain "how" the argument is constructed rigorously and logically within 

abstract algebra standards. 
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Errors and Misconceptions Committed by Subject R3 

Figure 4 shows the problem-solving process carried out by Subject R3. From this 

figure, we can observe how the proof strategy chosen by the subject triggers several 

types of errors and misconceptions. A detailed analysis of the types of errors and 

misconceptions experienced by Subject R3 can be found in Table 3. This analysis 

highlights how mistakes in proof strategy and symbolic manipulation lead to the 

construction of an invalid proof. 

 

 
Figure 4. Subject R3’s response in constructing the proof 

 

Table 3. Analysis of Error Types and Misconceptions of Subject R3 

No Proof 
Component 

Type of Error and 
Misconception 

Description and Evidence 

1 Initial Strategy E6: Invalid/Missing 
Proof & E5: 
Disorganized Proof 

The subject did not prove the 
Homomorphism property at all. 
Instead, the subject attempted to 
prove 𝐾/{1, −1} ≃ 𝐿 directly (which 
was incorrect) rather than utilizing 
the First Isomorphism Theorem. 

2 Injective Property 
M4: Inconsistent 
Application of Rules & 
M3: Reversal of 
Definition/Theorem 

The subject failed to recognize 
that 𝑥2 = 𝑦2 in 𝐾 = ℝ∗ berarti 𝑥 =
±𝑦. He claims that 𝑦 = 𝑥 is 
fundamentally wrong, proving that 
the mapping is actually not injective. 

3 Surjective 
Property 

E6: Invalid/Missing 
Proof & E8: Ignoring 
Quantifiers 

The mathematical manipulation in 
the surjectivity proof was 
nonsensical, beginning with 𝜓(𝑦) =
𝜓(𝑥) and continuing in a manner that 
did not align with the definition of 
surjectivity, which requires finding a 
pre-image 𝑥 ∈ 𝐾 for every 𝑦 ∈ 𝐿. 
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No Proof 
Component 

Type of Error and 
Misconception 

Description and Evidence 

4 Conclusion E1: Overly Broad 
Symbol & E4: Non-
Mathematical Text 

The use of quotient group notation 
was incorrect and ambiguous, such 
as 𝐾/(𝑦, 𝑥) and (1, −1) (using 
ordered pairs instead of the set 
{1, −1}). 

 

In-depth, Subject R3’s failure in the isomorphism proof is rooted in the inability 

to use formal definitions as tools for proving. This aligns with findings that many 

students view definitions as memorized text rather than operational tools for building 

structured deductive arguments (Schneider, 2020). Such results can be categorized as 

errors E6 (invalid/missing proof) and E5 (disorganized proof), reflecting a failure to 

build a systematic proof scheme, consistent with studies by Norton et al. (2025) on 

student difficulties in constructing introductory proofs. 

In the injectivity section, the subject's error in concluding 𝑥2 = 𝑦2  ⇒ 𝑥 = 𝑦 

within group ℝ∗ indicates an epistemological obstacle in the form of 

overgeneralization from high school algebra rules, where students are accustomed to 

single-solution scenarios (Schneider, 2020). Specifically, the subject failed to recognize 

that in the group of non-zero real numbers, the equation actually has two solutions: 

𝑥 = ±𝑦. This error occurs because the subject remains at the Action level of 

understanding in APOS theory, capable only of performing routine procedural 

manipulations without structural reflection on identity elements and group operation 

properties (Arnon et al., 2014). At this level, group definitions and properties have not 

been encapsulated as objects that can be flexibly manipulated, making such errors very 

common. 

Furthermore, the errors made regarding surjectivity can be classified as E6 

(invalid proof) and E8 (ignoring quantifiers). The subject performed illogical symbolic 

manipulations, such as writing 𝜓(𝑥) = 𝜓(𝑦) without a systematic procedure to find a 

pre-image 𝑥 for every 𝑦 in the codomain. This pattern indicates a weak understanding 

of quantified statements and the functional relationship between domain and 

codomain elements. Studies on the transition from natural to formal language show 

that many students struggle to consistently interpret function symbols, dependent 

variables, and the quantifiers "for every" or "there exists"; consequently, reasoning 

about surjectivity often devolves into notation manipulation devoid of logical meaning 

(Kwon & Park, 2025). 

Finally, in the conclusion, Subject R3 committed errors related to E1 (overly 

broad symbols) and E4 (non-mathematical text). The subject used ordered pair 

notation 𝐾/(1, −1) or 𝐾/(𝑦, 𝑥)  to represent the quotient group instead of writing the 

correct set of cosets, such as 𝐾/{1, 1}.. This demonstrates a cognitive inability to 

encapsulate the coset concept into a single abstract object. Rather than seeing a coset 

as a "single point" in the quotient structure, the subject reverted to more familiar 

schemas like Cartesian products and ordered pairs. Studies on epistemological 

obstacles in advanced mathematics suggest that when students lack adequate 
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visualization and representation schemas for abstract objects (such as quotient groups 

or partitions), they tend to replace them with more concrete but ontologically incorrect 

structures (Schneider, 2020). 

CONCLUSION 

Based on the results and discussion above, it can be concluded that students 

experience significant cognitive obstacles in integrating their understanding of 

structural concepts with formal proof capabilities. This is characterized by the 

emergence of fundamental misconceptions, such as the confusion between domain and 

codomain elements in defining the Kernel (M7), as well as patterns of disorganized 

proof (E5) and logical "holes" (E9) that lead to the failure of constructing valid 

arguments regarding surjectivity and homomorphisms. The reliance on real number 

algebraic intuition, which triggers over-generalization (M4/M5), along with routine 

procedural manipulation behaviors, confirms that student understanding remains 

stalled at the "Action" level of APOS theory. At this level, they fail to perform structural 

reflection on the operational boundaries of groups. This condition culminates in 

ontological misconceptions when representing quotient groups using ambiguous 

symbols (E1), demonstrating a failure in the process of encapsulating the coset concept 

into a single object. By identifying in depth "what" and "why" these errors occur, this 

study successfully maps specific failure patterns in quotient group and 

homomorphism materials. These findings serve as a crucial foundation for designing 

instructional interventions based on cognitive transitions to minimize similar 

obstacles in the future. 
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